| B.H. GARDI COLLEGE OF ENGINEERING AND TECHNOLOGY | ||||
| M.C.A. 1st INTERNAL EXAM (Oct – 2010) | ||||
| Subject : | (610004) FCO | Date : - | 20/10/10 | |
| Total Marks : | 30 | Sem / Branch : - | 1st M.C.A | |
| Student ID : | ______________ | Time : - | 8:30 to 9:30 am | |
Instructions: -
(1) Digits to the right indicate full marks.
(2) Assume suitable data whenever necessary.
(3) Start new question from new page.
| Que.1 | Do as directed 1) Convert (10101011)2 to Decimal. 2) Convert (512.25)10 to Binary. 3) Convert (1234)7 to decimal. 4) Convert (1001)2 into Grey Code. 5) Convert (4 ¼ )10 into decimal 6) Convert (1234)9 to decimal | 06 |
| Que.2(a) | Prove that NAND gate is universal gate. | 03 |
| Que.2(b) | Explain basic components of Digital Computer. | 03 |
| OR | ||
| Que.2(b) | Write De Morgan theorem for three variables in both form. Prove any one using perfect induction method. | 03 |
| Que.3 | 1) Substrate 0.5 – 40.24 using r’s and (r-l)’s complement. 2) Multiply (101.01 * 10.1)2 3) (34)7 = (____)12 | 02 02 02 |
| OR | ||
| Que.3 | 1) Substrate (1101.01 - 1011.1)2 using r’s and (r-l)’s complement. 2) Divide (1010 / 10)2 3) (53)6 to (__)10 | 02 02 02 |
| Que.4 | Simplify the following Boolean function to the minimum number of literals and draw a block diagram for simplified circuit. 1) (A+B)’ (A’+B’)’ 2) y(wz’ + wz) + xy | 06 |
| OR | ||
| Que.4 | Simplify the following Boolean function to the minimum number of literals. 1) ((ABC+A’B’)’+BC)’ 2) (WX+WY’)(X+W)+WX(X’+Y’) | 06 |
| Que.5 | 1) Simplify Boolean functions using K Map. F(A,B,C,D) = ∑ m(5,6,7,9,10,11,13,14,15) 2) Detect and correct error for even parity hamming code (1101010)2 | 04 02 |
| OR | ||
| Que.5 | 1) Simplify Boolean functions using K Map. AB+AB’C+A’BC’+BC’ 2) Detect error using even parity code for given binary nos. a. 10101 b. 1101101 | 04 02 |
Best of Luck
No comments:
Post a Comment