1. Prove that NAND and NOR gates are universal gate.
2. State and Prove De Morgan’s theorems for 3 variables using perfect induction method.
3. Simplify below expressions, and draw a block diagram of the circuit for simplified expression.
a. AB’C’ + A’B’C’ + A’BC’ + A’B’C
b. (A+B+C)(A+B’+C’)(A+B+C’)(A+B’+C)
c. A(A+B+C) (A’+B+C) (A+B’+C) (A+B+C’)
d. (AB’+A’B+AC’)(A’B’+AB’+AC’)
4. Convert following expressions to sum of products form.
a. (A+B)(B’+C)(A’+C)
b. (A’+C) (A’+B’+C’)(A+B’)
5. Convert following expressions to product of sum form.
a. AB + A’(B+C’)(D+B’)
b. (B + C)[(B’ + C’)(A + C’)(B + C )]
6. Write a boolean expression is sum of products form for a logic network that will have a 1 output when x=1,y=0,z=0 ; x=1,y=1,z=0 ; x=1,y=1,z=0 ; x=1,y=1,z=1 ; and 0 output for all other sets of input values. Simplify the expression derived and draw a block diagram for the simplified expression.
7. Derive a Boolean expression in SOP form for 3 variable function. Function generates output 1 when number of 1s are more than number of 0s in an input.
8. Simplify below expressions using K Map method.
a. AB + AC’ + ABC’ + AB’C
b. F(w,x,y,z) = ∑(0,2,6,7,8,10,14,15)
c. F(w,x,y,z) = ∑(1,3,5,8,9,10,13) +d(2,6,11,12)
d. F(w,x,y,z) = ∑(mn ) where n = 0 to 15
9. Simplify below expression in POS form using K map method
a. F(a,b,c,d) = ∑(3,7,11,13,14,15)
b. F(w,x,y,z) = ∑(0,2,4,6,8,10,12,14)
Prof. V. A. Gandhi
No comments:
Post a Comment