Wednesday, November 17, 2010
Tuesday, November 16, 2010
Mid Sem Exam Paper of FCO ( 610004)
Q 1. | a) Convert decimal (14 1/8) into binary number. b) Multiply 16 * 8.625 using binary multiplication. c) Perform 14 – 9 using r’s and (r-1)’s complement. d) Convert (24)5 in to (___)7 . e) Convert (10110)2 in to Gray code. f) Correct error if any in (1101001)2 hamming code. | 01 01 01 01 01 01 |
Q 2. | a) using maps derive minimal sum of product expressions for ∑(0,2,4,8,9,10) + d(1,13,15) b) Simplify abc ( abc’ + ab’c + a’bc) and draw block diagram of gating network. OR b) Simplify xy + xyz’ + xyz’ + xyz and draw block diagram of gating network using NAND Gate only. | 03 03 03 |
Q 3 | a) Prove that NOR gate is universal gate. b) Prove that (ab + a’b’)’ = a’b + ab’ | 04 02 |
| OR | |
Q 3 | a) Convert A + A’B + A’C’ into product of sum. b) Simplify F(a,b,c,d) = ∑(0,2,6,7,8,10,11,14,15) | 03 03 |
Q 4 | a) What is Flip Flop? What is Master Slave FF? Explain it with example. b) Explain Transfer Circuit with diagram. | 04 02 |
| OR | |
Q 4 | What is shift register? Explain bidirectional Shift Register | 06 |
Q 5 | Design counter having sequence 0,2,4,6,7 using JK flip flop. | 06 |
| OR | |
Q 5 | Design counter having sequence 4,2,6,1,7 using RS flip flop. | 06 |
Internal Exam paper of FCO (610004)
B.H. GARDI COLLEGE OF ENGINEERING AND TECHNOLOGY | ||||
M.C.A. 1st INTERNAL EXAM (Oct – 2010) | ||||
Subject : | (610004) FCO | Date : - | 20/10/10 | |
Total Marks : | 30 | Sem / Branch : - | 1st M.C.A | |
Student ID : | ______________ | Time : - | 8:30 to 9:30 am | |
Instructions: -
(1) Digits to the right indicate full marks.
(2) Assume suitable data whenever necessary.
(3) Start new question from new page.
Que.1 | Do as directed 1) Convert (10101011)2 to Decimal. 2) Convert (512.25)10 to Binary. 3) Convert (1234)7 to decimal. 4) Convert (1001)2 into Grey Code. 5) Convert (4 ¼ )10 into decimal 6) Convert (1234)9 to decimal | 06 |
Que.2(a) | Prove that NAND gate is universal gate. | 03 |
Que.2(b) | Explain basic components of Digital Computer. | 03 |
OR | ||
Que.2(b) | Write De Morgan theorem for three variables in both form. Prove any one using perfect induction method. | 03 |
Que.3 | 1) Substrate 0.5 – 40.24 using r’s and (r-l)’s complement. 2) Multiply (101.01 * 10.1)2 3) (34)7 = (____)12 | 02 02 02 |
OR | ||
Que.3 | 1) Substrate (1101.01 - 1011.1)2 using r’s and (r-l)’s complement. 2) Divide (1010 / 10)2 3) (53)6 to (__)10 | 02 02 02 |
Que.4 | Simplify the following Boolean function to the minimum number of literals and draw a block diagram for simplified circuit. 1) (A+B)’ (A’+B’)’ 2) y(wz’ + wz) + xy | 06 |
OR | ||
Que.4 | Simplify the following Boolean function to the minimum number of literals. 1) ((ABC+A’B’)’+BC)’ 2) (WX+WY’)(X+W)+WX(X’+Y’) | 06 |
Que.5 | 1) Simplify Boolean functions using K Map. F(A,B,C,D) = ∑ m(5,6,7,9,10,11,13,14,15) 2) Detect and correct error for even parity hamming code (1101010)2 | 04 02 |
OR | ||
Que.5 | 1) Simplify Boolean functions using K Map. AB+AB’C+A’BC’+BC’ 2) Detect error using even parity code for given binary nos. a. 10101 b. 1101101 | 04 02 |
Best of Luck
Assignment - 2 Logic Gates, Boolean Expression, Simplification using boolean algebra, Karnaugh's Map ( K Map),
1. Prove that NAND and NOR gates are universal gate.
2. State and Prove De Morgan’s theorems for 3 variables using perfect induction method.
3. Simplify below expressions, and draw a block diagram of the circuit for simplified expression.
a. AB’C’ + A’B’C’ + A’BC’ + A’B’C
b. (A+B+C)(A+B’+C’)(A+B+C’)(A+B’+C)
c. A(A+B+C) (A’+B+C) (A+B’+C) (A+B+C’)
d. (AB’+A’B+AC’)(A’B’+AB’+AC’)
4. Convert following expressions to sum of products form.
a. (A+B)(B’+C)(A’+C)
b. (A’+C) (A’+B’+C’)(A+B’)
5. Convert following expressions to product of sum form.
a. AB + A’(B+C’)(D+B’)
b. (B + C)[(B’ + C’)(A + C’)(B + C )]
6. Write a boolean expression is sum of products form for a logic network that will have a 1 output when x=1,y=0,z=0 ; x=1,y=1,z=0 ; x=1,y=1,z=0 ; x=1,y=1,z=1 ; and 0 output for all other sets of input values. Simplify the expression derived and draw a block diagram for the simplified expression.
7. Derive a Boolean expression in SOP form for 3 variable function. Function generates output 1 when number of 1s are more than number of 0s in an input.
8. Simplify below expressions using K Map method.
a. AB + AC’ + ABC’ + AB’C
b. F(w,x,y,z) = ∑(0,2,6,7,8,10,14,15)
c. F(w,x,y,z) = ∑(1,3,5,8,9,10,13) +d(2,6,11,12)
d. F(w,x,y,z) = ∑(mn ) where n = 0 to 15
9. Simplify below expression in POS form using K map method
a. F(a,b,c,d) = ∑(3,7,11,13,14,15)
b. F(w,x,y,z) = ∑(0,2,4,6,8,10,12,14)
Prof. V. A. Gandhi